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We have reviewed the effect of age on drug metabolism in relation to four
drugs: caffeine (CYP1A2), midazolam (CYP3A4), morphine (glucuronidation) and
paracetamol (glucuronidation and sulphation). For all four drugs clearance is
significantly reduced in the neonatal period. This reduced clearance remains
present in infants and children under the age of two years for caffeine, midazolam
and morphine but not for paracetamol. There is considerable inter-individual
variation in clearance values for all ages and this appears to be greatest for
midazolam. For children aged two years and older the median plasma clearance
values for all four drugs are similar to adolescents and adults.
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Introduction 

There are many factors that affect drug
metabolism. There is currently considerable
interest in the field of pharmacogenetics i.e. the
effect of genetic make up in relation to the capacity
to metabolise different drugs. We wish to give a
brief overview of the effect of age on drug
metabolism from birth through childhood to
adolescence.

The major site of drug metabolism is within the
liver. The gastrointestinal tract, blood cells and
other organs are also involved in drug metabolism.
The biological purpose of drug metabolism is to
convert lipophilic (fat soluble) compounds into
more polar and thus more water soluble substances
that are more readily excreted into bile or urine.
The enzymes involved in drug metabolism are not
only involved in the breakdown of medicines but
also the numerous other chemicals that humans
ingest or inhale either deliberately or unwittingly.

The major pathways involved in drug metabolism
are divided into phase 1 and phase 2 reactions.
Phase 1 involves oxidation, reduction, hydrolysis
and hydration reactions. The major pathway is
oxidation which involves the cytochrome P450
dependent (CYP) enzymes. The major CYP enzymes
are CYP1A2, CYP2B6, CYP2C8 – 10, CYP2C19,
CYP2D6, CYP2E1 and CYP3A4 and 5. The major
pathways for phase 2 involve glucuronidation,
sulphation, methylation, acetylation and
glutathione conjugation. 

We plan to highlight the changes that have been
previously described in relation to some of the
major metabolic pathways and review enzyme
activity in paediatric patients of different ages.
Specifically we will review the development of
CYP1A2 and CYP3A4 as examples of phase 1 and
glucuronidation and sulphation as examples of
phase 2 metabolism.

We have used the age classification accepted by
both the European Medicines Evaluation Agency



and also the recent International Conference on
Harmonisation1. This classification divides
paediatric patients into 5 age groups; preterm
neonates, full term neonates, infants from 1
month up to 24 months of age, children between
the ages of 2 and 11 years and adolescents from
12 to 17 years. 

General trends in the development
of phase 1 drug metabolism in
children

Total cytochrome P450 content in the fetal liver
is between 30 and 60% of adult values and
approaches adult values by 10 years of age2.
Different developmental patterns have been
identified for CYPs involving activity in the fetal
liver (CYP3A7), minimal activity in the fetal liver
but with rapid increase hours after birth (CYP2D6
and CYP2E1) and development in infancy
(CYP1A2)3–6.

For many CYP drug substrates weight corrected
clearance values are often low at birth but then
increase rapidly reaching a maximum by 2 years
of age. Hepatically metabolised drugs that exhibit
a higher systemic weight normalised clearance in
children compared to adults include
theophylline7, diclofenac8, teniposide9,
phenytoin10, carbamazepine11 and omeprazole12.
Possible reasons for increased hepatic clearance
in children include an increased liver volume
normalised to body weight13,14 or a higher
concentration of catalytically active CYPs. A recent
study failed to detect increased intrinsic CYPs 1A2,
2C8, 2E1 and 3A4/5 activity in paediatric livers
in comparison to adult livers15.

CYP3A4

The CYP3A subfamily is the most abundantly
expressed CYP subfamily in the human adult and
newborn liver. Moreover, this subfamily is

involved in the metabolism of more than half of
all drugs, including cyclosporin, tacrolimus,
cisapride, midazolam, fentanyl, lidocaine,
nifedipine, indinavir and verapamil. 

The CYP3A subfamily consists of at least 4
enzymes: CYP3A4, CYP3A5, CYP3A7 and
CYP3A43. CYP3A4/CYP3A5 account for 30-40%
of total CYP content in the adult liver and
intestine. CYP3A4 and CYP3A5 are differentially
expressed, but have largely overlapping substrate
specificity. CYP3A7 is the main CYP isoform in
the human fetal and newborn liver. From the
few studies available, it appears that the substrate
specificity of CYP3A7 is different from CYP3A4.

In vitro studies have shown that CYP3A7 activity
is high directly after birth, while CYP3A4 activity
is very low3. During the first days after birth a
transition occurs from mainly CYP3A7 activity to
CYP3A4 activity. Finally, adult levels of CYP3A4
are reached during the first years of life. This
developmental pattern of CYP3A4 is reflected by
the change in clearance rate of midazolam16–19 at
different ages (Table 1). Midazolam clearance is
reduced in infants under the age of 2 years.
Although the median plasma clearance reaches
adult levels in children over the age of 2 years,
it is important to recognise the considerable inter-
individual variation17 (up to 100 fold in one
study)18. The exact developmental pattern of
CYP3A4 activity during infancy remains to be
elucidated. Studies of midazolam show a lower
clearance (corrected for body weight) for CYP3A
substrates in the first two years of life18. In
contrast, the clearance of both cyclosporin and
tacrolimus is higher in infants than older children
and adults20, 21. Young children, therefore, require
higher cyclosporin and tacrolimus dosages (in
relation to body weight) than adults22,23.

Interestingly, CYP3A is not only localised in the
liver, but also in the intestine. Therefore, intestinal
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Table 1. Age and midazolam clearance

Age group Number of Mean or median Range Reference
patients plasma clearance

(ml/min/kg)
Preterm neonates 24 1.8 0.7–6.7 16

? 1.2 ? 17

Term neonates ? 1.8 ? 17

Infants 1–24 months 25 3.0 0.5–25.8 18

Children 2–11 years 12 9.2 0.5–66.7 18

Adolescents 12–17 years 20 10.0 ? 19

*Data recalculated for modified age groups



drug metabolism also contributes to presystemic
clearance of CYP3A substrates. A recent study
showed in vitro that the ontogeny of intestinal
CYP3A activity mirrors that of hepatic CYP3A
activity24. Therefore, the oral bioavailability of
CYP3A substrates may be increased consequent
to reduced presystemic clearance in newborn
infants. This assumption is supported by the
finding that midazolam oral bioavailability is
higher in preterm infants when compared to
adults25.

CYP1A2

CYP1A2 accounts for approximately 13% of the
total cytochrome P450 enzyme expression in the
livers of healthy adult humans26. Caffeine is a
recognised probe to study the activity of CYP1A2
both in vitro and in vivo27 (Figure 1).

In vitro caffeine metabolism
In vitro studies have shown that the rates of
caffeine N1, N3 and N7 demethylation are
significantly lower in the fetus, neonate and infant
than the adult28. C-8 hydroxylation to 1,3,7
trimethyluric acid was not significantly different
between age groups. The production of total
dimethylxanthines increased significantly with
age up to 300 days. Differences in the maturational
profile of each pathway suggest that different CYP
isozymes are involved with a delay in maturation
of N1 demethylation in comparison with N3 and
N7 demethylation.

In vivo caffeine metabolism
In one study total caffeine demethylation and N3
and N7 demethylation increase exponentially with
postnatal age and reach a plateau by 120 days29.
The maturation of N1 demethylation is delayed
and does not occur until after 19 months of age.
8-hydroxylation is mature by as early as one month
and may be higher in infants compared to adults.
Because the N3 and N7-demethylation pathways
account for 88% of the metabolism of caffeine in
humans30, caffeine clearance should give a
reasonable estimate of in vivo CYP1A2 activity. 

Studies in preterm neonates31, 32 have shown
reduced clearance of caffeine in comparison with
term babies and infants33, 34. The overall changes
in caffeine clearance with age are shown in Table
2. Pons and co-workers have demonstrated
significant impairment of the 3N demethylation
of caffeine by CYP1A2 in infants under the age
of 6 months, thereafter the activity remains fairly
constant35, 36.

One study demonstrated an inverse relationship
between weight adjusted body clearance and the
molar fraction of caffeine excreted unchanged in
the urine in neonates and infants aged 3 days to
9 months37. There have been relatively few studies
of the pharmacokinetics of caffeine in children
after the first year of life. In general most in vivo
clearance results for caffeine in children mirror
the in vitro development of CYP1A2 in the 
human liver6. 

Glucuronidation and sulphation

Many medicines undergo glucuronide
conjugation after oxidation. Other medicines
undergo direct conjugation with glucuronic acid
as a primary metabolic pathway. An important
group of phase 2 metabolising enzymes are the
UDP-glucuronyltransferases (UGTs); to date at
least 10 different UGTs have been identified.
Several drugs are glucuronidated; e.g. morphine,
paracetamol, codeine, lorazepam, naloxone,
propofol and chloramphenicol38. As these drugs
are metabolised by one or more different UGT
isoforms, and some can also be sulphated, the
effect of ontogeny on the pharmacokinetics of
these drugs is not uniform. 

Sulphation is the other major phase 2 metabolic
pathway and results in formation of water soluble
metabolites that can be excreted renally39, 40.
Sulphotransferases are the enzymes involved in
sulphation. The total number of sulphotransferase
enzymes are unknown but are divided into two
groups, catechol sulphotransferases and phenol
sulphotransferases. The ontogeny of sulphation is
different for different drugs. The developmental
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Figure 1. The major pathways of caffeine metabolism

Caffeine (1,3,7 Trimethylxanthine)

3,7 dimethylxanthine
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1,7 dimethylxanthine
(Paraxanthine)

1,3 dimethylxanthine
(Theophylline)

N-1 demethylation N-3 demethylation N-7 demethylation

C-8 hydroxylation
1,3,7 trimethyluric acid



profiles of glucuronidation and sulphation are
illustrated by the examples of morphine and
paracetamol, which are markedly different.

Morphine
Morphine undergoes conjugation (UGT2B7) to
both morphine 3-glucuronide and morphine 6-
glucuronide. The former is the major metabolite
and is inactive, whereas morphine 6-glucuronide
has considerable analgesic activity. Studies have
shown that the sulphation of morphine is a minor
metabolic pathway that does not contribute to
the overall clearance41. The changes in plasma
clearance, therefore, reflect the development of
glucuronidation. This is markedly reduced in
prematurity and after infancy reaches adult
levels42–45 (Table 3). Inter-individual variation is
greatest in the neonatal period42.

Paracetamol
Paracetamol undergoes metabolism by
glucuronidation (UGT 1A6 and to a lesser extent
UGT 1A9) and sulphation46. Glucuronidation is
reduced but there is, however, compensatory
sulphation which has a significant impact on the
clearance of paracetamol in prepubertal children.
There have been relatively few studies looking at
the clearance of paracetamol and we have
therefore summarised the studies that have
determined the plasma half-life47–51 (Table 4). This
is increased in neonates and especially in preterm
neonates47,48. In infancy and childhood the half-
life is the same as in adolescents and adults49–51.
The ratio of glucuronidation to sulphation,
however, changes with development52. In contrast
to morphine the sulphation of paracetamol plays
a significant role in drug metabolism. 
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Table 2. Age and caffeine clearance

Age group Number of Mean or median Range Reference
patients plasma clearance

(ml/min/kg)
Preterm neonates 89 4.9 3–17 31

Term neonates 1 20 - 33

Infants 1–24 months 12 72.4 22.3–153 34

Children 2–11 years 9 81.6 21–132 35

Adolescents 12–17 years _ _ _ _

Adults ? 94 21–270 36

Table 3. Age and morphine clearance

Age group Number of Mean or median Range Reference
patients plasma clearance

(ml/min/kg)
Preterm neonates 72 3.5 0.5–9.6 42

Term neonates 44 6.3 0.6–39 42

Infants 1–24 months 11 13.9 8.3–24.1 43

Children 2–11 years 18 37.4 20.1–48.5 44

Adolescents 12–17 years 6 25.4 9–53.4 45

Table 4. Age and paracetamol metabolism

Age group Number of Mean or median Range Reference
patients plasma half life (h)

Preterm neonates 21 5.7 3.5–25.2 47

Term neonates 12 3.5 2.2–5.0 48

Infants 1–24 months 15 1.6 0.8–2.4 49

Children 2–11 years 18 1.7 ? 50

Adolescents 12–17 years 10 1.5 0.8–1.9 51



The relative contributions of glucuronidation and
sulphation to the metabolism of morphine41 and
paracetamol46 are shown in Table 5. In contrast
to paracetamol, sulphation is not always available
as an alternative metabolic pathway when
glucuronidation activity is developmentally 
low. This is illustrated by the well-known toxicity
of chloramphenicol in neonates, which is
attributed to accumulation of drug due to low
glucuronidation activity and the lack of alternative
metabolic pathways53. 

In summary, due to differences in the ontogeny
of the individual UGT isoforms, the different
substrate specificity of the individual UGT isoforms
and the variations in availability of alternative
metabolic pathways, a single ontogenic pattern for
glucuronidation is not available. Therefore, up to
now, age-related adjustments in dosing of UGT
substrates can only be done per individual drug. 

Conclusions

We have used the data for four drugs that are
extensively used in children and hence there is
considerable information regarding the
pharmacokinetics. These four drugs involve both
phase 1 (CYP1A2 and CYP3A4) and phase 2
(glucuronidation and sulphation) pathways. We
have demonstrated that for all four drugs plasma
clearance is reduced in the neonatal period
(paracetamol: only prolonged plasma half-life has
been documented). This reduction in clearance
appears to be greater in preterm infants. Adult
clearance values appear to be reached within the
first two years of life for caffeine, midazolam and
morphine. It is important not to extrapolate these
findings to all medicines and to all metabolic
pathways. For instance studies of cyclosporin and
tacrolimus, which undergo metabolism by
CYP3A4 show increased clearance in infants.
Further studies are required in relation to drug
metabolism in infants between the ages of one
and twenty four months.
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