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Glucocorticoids (GCs) exert their potent
anti-inflammatory and immuno-
suppressive effects through an intricate
combination of mechanisms. Through
both pre- and post-transcriptional
means, GCs modify gene regulation in
target cells by interacting with the
cytosolic glucocorticoid receptor (GR).
Among their actions, GCs inhibit 
the production of pro-inflammatory
cytokines. This inhibition is
accomplished by antagonism of pro-
inflammatory transcription factors by
either the GR itself or by de novo-
synthesised antagonists such as
glucocorticoid-induced leucine zipper
and inhibitor of κB (IκB). Preferential
inhibition of type-1 cytokines leads to
an eventual shift towards a Th2 profile
among CD4+ T-lymphocytes, reducing
the pro-inflammatory Th1 population.
Not only are pro-inflammatory
cytokines inhibited, but the effects of
these cytokines upon target cells are
diminished due to GC-mediated
interference with cytokine receptor
signalling. This leads to increases in 

T-cell, thymocyte, and eosinophil
apoptosis, reduced T-cell activation,
and decreased production of nitric
oxide. Further to these effects, GCs
inhibit prostaglandin and leukotriene
production by inducing synthesis of
lipocortin-1. GCs also up-regulate
expression of the anti-inflammatory
cytokine transforming growth factor-β
(TGF-β) in certain cells. A further
mechanism by which GCs suppress
normal inflammatory responses is by
down-modulating adhesion molecules
on antigen-presenting cells (APCs). 
It is this synergy of many effects 
that accounts for the potency of GC
action and therefore for the utility of
these drugs, although it is this very
complexity that hampers study in this
area. Consideration of GC mechanisms
of action is important in order to
develop an understanding of the long-
term effects of use of these heavily
prescribed but poorly understood
drugs.
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Introduction

Glucocorticoids (GCs) are among the most
prescribed drugs in clinical medicine and are used
to treat a variety of inflammatory disorders. GCs

are also used in immunosuppressive regimens, as
in inhibition of allograft rejection. Despite their
use as potent anti-inflammatory and immuno-
suppressive agents for more than 50 years, GCs
exert their effects through mechanisms that



remain only marginally understood. Although it
has been possible to determine a number of the
key modes by which GCs function, the complex
interplay between GCs and target cells remains
unclear, although many advances have been made
in the last 20 years. This review focuses on the
current state of knowledge regarding the specific
mechanisms of GC-mediated immunosuppressive
and anti-inflammatory action.

As nearly every cell in the body expresses the
GC-specific glucocorticoid receptor (GR),
endogenous and synthetic GCs profoundly affect
virtually every major organ system. The activated
GR participates in gene regulation at the level of
DNA transcription. The GR is itself a transcription
factor, capable of binding directly with target DNA
or with other transcription factors to excite or
inhibit transcription. Glucocorticoid response
elements (GREs) are specific 15 base pair DNA
sequences to which the GC receptor can bind to
positively or negatively regulate transcription1,2

(Figure 1).

GC effects include inhibition of pro-inflammatory
cytokine production, which is regarded as the most
pronounced effect of these drugs on the immune
system3. Pro-inflammatory cytokines can be either
directly or indirectly inhibited by GCs. Direct
inhibition may entail GR-mediated transcriptional
repression as outlined above. GCs also regulate
cytokine expression by augmenting production of
proteins that destabilise cytokine mRNA, which in
turn diminishes expression of these cytokines4.
Indirect means through which GCs inhibit cytokine
production include excitation of synthesis of
glucocorticoid-induced leukine zipper, inhibitor of
κB (IκB), and lipocortin-1, all of which reduce
synthesis of inflammatory compounds. Both IκB
and glucocorticoid-induced leukine zipper inhibit
the activity of pro-inflammatory transcription
factors, thereby reducing expression of targeted
genes. Although GC up-regulation of lipocortin-1
does not affect cytokine production per se, lipocortin-
1 action inhibits synthesis of prostaglandins and
leukotrienes, two important classes of inflammatory
mediators5. 

Cells targeted by GCs in the suppression of normal
immune function include T-lymphocytes,
monocyte-macrophages, eosinophils, mast cells,
dendritic cells, and endothelial cells. Cytokine
down-regulation is not the only effect of GCs on
normal immune and inflammatory responses. 
GCs are believed to excite production of the anti-
inflammatory cytokine TGF-β in target cells through
pre- and post-transcriptional mechanisms6,7. GCs
interfere with the expression of adhesion molecules
on antigen-presenting cells (APCs) through a
mechanism requiring GR activation8,9; and GCs

induce apoptosis in mature T-lymphocytes,
monocytes, and eosinophils, but paradoxically
interfere with the normal destruction of developing
thymocytes that exhibit self-affinity10-13. An in 
vivo study conducted on mice has confirmed that
glucocorticoids can therefore play a role in
autoimmune disorders14.

In addition to these effects, GCs inhibit T-cell
response to activating stimuli through interference
with T-cell receptor-mediated signalling pathways15-

17. Lastly, it is now widely believed that preferential
inhibition of T helper cells (Th) and in particular
Th1 cytokines causes a long-lasting shift towards 
a predominantly Th2 profile among CD4+ T-
lymphocytes18,19. It has been postulated that this
shift results in a persisting anti-inflammatory profile,
although preliminary in vivo studies have not fully
supported this hypothesis20-22.
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Figure 1 Mechanisms of transcriptional regulation by
glucocorticoids: A: The cytosolic glucocorticoid receptor (GR)
binds to the GC and migrates to the nucleus as either a
monomer or homodimer. B: Dimerised GR directly binds to
the GC response element (GRE) upstream of the target
segment of DNA. Assemblage of the transcription initiation
complex ensues, beginning transcription of the target gene.
In some cases, GR does not bind directly to the DNA but
will still participate in the transcription initiation complex.
C: Activated GR may bind to a GRE within a target gene
sequence or promoter, thereby blocking transcription. 
D: The GR monomer antagonises transcription factors, often
by ‘tethering’ to the transcription initiation complex. This
prevents expression of downstream genes, and is believed
to be most important mechanism of transcriptional regulation
in GC anti-inflammatory activity.
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Further to the anti-inflammatory effects of GCs,
there are paradoxical pro-inflammatory effects on
T-lymphocytes. Unexpectedly, high affinity IL-2
and IL-7 receptors are up-regulated in T-cells
treated with GCs23-25. Subsequent mitogen
stimulation of these GC-treated cells leads to
increased T-cell effector function versus untreated
cells, as measured by increased cellular
proliferation23,24. It is possible that this rebound
phenomenon could account for increases in
inflammatory disorder following withdrawal of
GCs in patients, but there remains uncertainty
regarding the significance of this phenomenon.

Prior to reflecting upon the net effects of GC action,
it is first necessary to investigate the mechanisms
in more detail. Table 1 gives an overview of cellular
processes affected by glucocorticoid treatment in
the management of immune disorders.

Inhibition of cytokine and
inflammatory mediator production

There are numerous implications of decreased
cytokine production resulting from GC treatment.
Cytokines play important roles in cell activation and
survival, as well as in the production of certain
important inflammatory enzymes. GC-mediated
inhibition of cytokine production may account for
the observed apoptosis of eosinophils and 
T-lymphocytes, and for inhibition of the production
of the pro-inflammatory enzyme nitric oxide
synthase in bronchial epithelial cells14,27-29. However,
the best documented effects of decreased cytokine
production are inhibition of T-cell and macrophage
activation and reduction in T-cell proliferation.

GCs inhibit IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, 
IL-11, IL-12, IFN-γ, TNF-α, and GM-CSF3,4,30-40.
Conversely, the anti-inflammatory cytokine TGF-

Table 1 Mechanisms of glucocorticoid-induced immunosuppression

Targeted cellular process Result of GC treatment Cells affected Mechanism

Cytokine production ↓ Expression of IL-1, IL-2, CD4+ T-lymphocytes, Antagonism of transcription
IL-4, IL-5, IL-6, IL-8, IL-11, macrophages, epithelial factors NF-κB, NF-AT, and
IL-12, IFN-γ, TNF-α, and cells, fibroblasts AP-1
GM-CSF mRNA de-stabilisation 

(IL-1, IL-2, IL-6, IL-8, and
GM-CSF)

Nitric oxide production ↓ Bronchial epithelial cells Caused by cytokine down-
regulation and a
corresponding decrease in
nitric oxide synthase levels

Production of prostaglandins, ↓ T-lymphocytes Up-regulation of lipocortin-1
leukotrienes synthesis, which inhibits

prostaglandin and leukotriene
production

TGF-β production ↑ T-lymphocytes Increased transcription, 
-stabilisation of mRNA

Cellular viability ↓ T-lymphocytes, monocytes, Stimulation of apoptosis by:
and eosinophils Decreased cytokine production

Induction of DNA cleavage26

Adhesion molecule Decreased expression of Monocytes, endothelial cells, Interference with NF-κB
expression ELAM-1, E-selectin, ICAM-1, bronchial epithelial cells, action Cytokine down-

and VCAM-1 neutrophils regulation TGF-β up-
regulation
‘Non-genomic’ mechanisms

1L-2 and IFN-γ -induced ↓ T-lymphocytes Synthesis of antagonistic
cellular activation proteins

Signalling enzyme repression

Mitogen-activated protein ↓ endothelial cells Non-genomic’ mechanisms
kinase activity

Primary APC stimulation
↓ T-lymphocytes

Th1/Th2 differentiation Th1 → Th2 T-lymphocytes Caused by altered balance of
(anti-inflammatory) profile pro- versus anti-inflammatory

cytokines in environment of
naive Th cells



β is up-regulated in T-lymphocytes. The prevailing
mechanism of cytokine inhibition depends on 
the specific cytokine and type of cell being
affected. GCs may reduce the synthesis of
inflammatory mediators by three main
mechanisms: direct disruptive GR-GRE binding,
antagonism of transcription factors, and de novo
synthesis of antagonistic products. Among these
de novo synthesised inhibitory products are
proteins that destabilise cytokine mRNA, as 
well as lipocortin-1.

Direct inhibition of transcription by GR-GRE binding

Upon cytosolic binding with a GC, the activated
GR dimerises, migrates to the nucleus and uses
its zinc fingers to bind with high affinity the GRE
segments in the DNA. The GRE locus is the critical
factor influencing the effect of the GCs on target
DNA. Activated GR can act in a manner either
inhibitory or excitatory of transcription depending
upon where in a gene it binds to DNA. In the
case of the osteocalcin gene, GR-GRE binding
occurs in the promoter region, blocking the
binding of important transcription factors to the
DNA, thus preventing gene transcription41,42.
Recent evidence suggests that although GR-GRE
binding negatively regulates a multitude of 
genes, cytokine inhibition is achieved through
antagonism of transcription factors without a
requirement for GR-GRE binding43. It is not clear
at this time which, if any, cytokines are directly
down-regulated by interaction between the
glucocorticoid receptor and its DNA response
element.

Antagonism of transcription factors

NF-κB, NF-AT, and AP-1 are three of the most
important transcription factors in the synthesis of
pro-inflammatory cytokines. They are proteins
that bind to promoters of target genes to begin
transcription, and GC action negatively regulates
the function of all three43. Macrophages produce
glucocorticoid-induced leucine zipper upon GC
stimulation, which attenuates NF-κB- and AP-1-
mediated transcription in T-cells44,45. Further-
more, activated GR is itself an antagonist of pro-
inflammatory transcription factors, binding
directly to AP-1 to inhibit IL-2 production in 
T-cells46,47. In T-lymphocytes, activated GR also
acts as a transcription factor for IκB, a known
antagonist of NF-κB48,49. By binding to and thus
segregating NF-κB in the cytosol, IκB reduces the
action of this important transcription factor,
suggesting a corresponding decrease in synthesis
of pro-inflammatory products48-50. However, IκB
action on its own is not sufficient to fully abrogate
NF-κB activity51,52. The mechanism also likely
involves direct GR inactivation of NF-κB through

the tethering mechanism shown in Figure 1d53.
Inhibition of the majority of cytokines is
accomplished by preventing transcription of 
these cytokines by reducing efficacy of their
transcription factors.

Lipocortin synthesis

GCs directly induce transcription of lipocortin-1,
providing the basis of another mechanism of anti-
inflammatory action5. Lipocortin-1 action prevents
arachidonic acid liberation, the result of which 
is decreased levels of prostaglandins and
leukotrienes54-56. Lipocortin-1 has been shown in
this way to inhibit proliferation of mitogen-
stimulated T-cells and mimic many GC
immunosuppressive effects in vitro5.

Degradation of cytokine mRNA 

GCs reduce the half-life of mRNA encoding 
IL-1, IL-2, IL-6, IL-8, and GM-CSF, a mechanism
independent of pre-transcriptional cytokine
down-regulation4,31,34,57,58. This reduction in
mRNA stability results in decreased synthesis of
the aforementioned cytokines and is directly
caused by the GC-induced synthesis of a protein
that targets cytokine mRNA for degradation4. 

Synthesis of transforming growth factor-β

Transforming growth factor-β is an immuno-
suppressive cytokine that reduces macrophage
activation and is produced upon GC stimulation
of resting or activated T-lymphocytes6,59. 
GCs augment production of TGF-β through
increased transcription as well as through
stabilisation of TGF-β mRNA; the latter is achieved
through inhibition of an mRNA-degrading
protein6,7,60,61. Whereas TGF-β production is not
increased in monocyte-macrophages, TGF-β
treatment increases glucocorticoid receptor
expression in these cells62,63. As macrophages are
targeted by GCs in cytokine down-regulation, this
suggests that TGF-β augment the degree of
suppression of pro-inflammatory cytokines. TGF-
β up-regulation therefore suggests an important
way in which GCs attenuate the inflammatory
response.

The above mechanisms outline ways in 
which GCs affect cytokine and inflammatory-
mediator levels in target cells. However,
modulating cytokine production is far from the
only mode of GC immunosuppressive and anti-
inflammatory action. Other mechanisms of GC
action are detailed in the remainder of the paper,
followed by a discussion of future directions for
research. 
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Adhesion molecule down-
modulation

Interaction between cell surface molecules of
lymphocytes and primary antigen-presenting cells
is critical to both the immune and inflammatory
responses. GCs are capable of down-modulating
adhesion molecules both in vivo and in vitro64,65. 
In vitro studies show GC-mediated decreases in
expression of ELAM-1, L-selectin, E-selectin,
ICAM-1, and VCAM-19,64,66. Cells affected by
reduced adhesion molecule expression include
monocytes, neutrophils, endothelial cells, and
bronchial epithelial cells. The latter suggests one
important way in which GCs are useful in the
treatment of asthma67. Adhesion molecule
expression is mediated by the transcription factor
NF-κB68. GC inhibition of NF-κB reduces 
adhesion molecule expression in endothelial 
cells69. In neutrophils, adhesion molecules are
inhibited due to GC-mediated decreases in
extracellular concentrations of cytokines such as
TNF-α which normally stimulate adhesion
molecule expression70,71. TGF-β, up-regulated by
GCs, also inhibits endothelial expression of VCAM-
172. Overall, down-modulation of adhesion
molecules reduces leukocyte adhesion to target
tissue in the inflammatory response, supporting
the notion that adhesion molecule down-
regulation is a critical in vivo mode by which GCs
function in suppressing inflammation and the
immune response73.

Interference with cellular 
signalling events

The reduced ability of immune cells to react to
stimuli is an important characteristic of GC action.
The specific synergistic action of Il-1, IL-6, and
IFN-γ has been shown to abrogate GC-mediated
inhibition of T-cell proliferation in vitro, but the
general inability of most cytokines to stimulate
proliferation of GC-treated cells suggests that GCs
interfere with cytokine effects on target cells30.
GC treatment of T-lymphocytes initially reduces
cell responsiveness to IL-2 and IFN-γ through a
mechanism that does not simply involve decreased
cytokine receptor expression74,75. This disruption
of cytokine-mediated T-cell proliferation may
operate through GC-induced synthesis of
antagonistic proteins and/or inhibition of enzymes
necessary for the function of cytokine receptor
signalling pathways15,17. Interference with T-cell
receptor signalling is also responsible for the
decrease in cytokine-induced cytokine production
documented in GC-treated T-cells37,39. Disruption
of mitogen-activated protein kinases in
endothelial cells and of primary APC stimulation
in T-cells offer further mechanisms through which
GC-mediated disruption of cell signalling events

results in decreased target cell activity16,76,77. 
A recent hypothesis proposes that T-cell activation
via intercellular adhesion is down-regulated 
by fast-acting ‘non-genomic’ mechanisms78. 
This hypothesis aims to explain the rapidity of
GC action in inhibiting T-cell activation, and
suggests that GCs physically interact with cell
membrane components to block signalling
pathways important to cellular activation78,79.

Preferential inhibition of Th1 cells
resulting in a predominantly Th2
profile

In the differentiation of a naive (Th0) CD4+ 
T-cell into a type 1 or type 2 cell, local cytokines
introduced into the cellular environment by CD4+
T-lymphocytes and macrophages play a decisive
role. Th1 cells, formed under type 1 cytokine
conditions, mediate inflammatory response
through secretion of pro-inflammatory cytokines
such as IFN-γ, whereas Th2 cells are generally
viewed as anti-inflammatory due primarily to the
immunosuppressive roles of 1L-4 and IL-10, both
type 2 cytokines44,80,81. GCs strongly inhibit
lymphocyte- and macrophage-based production
of Th1-stimulating cytokines IL-1, IL-12 and IFN-
γ, leading to higher relative concentrations of 
IL-4 and IL-10 (type 2 cytokines), and therefore
to an increase in the Th2 : Th1 ratio18,19,33.
Although IL-4 production may be suppressed by
GCs, this suppression is to a lesser degree than
the inhibition of the cytokines which drive Th1
cell lineage35,40. Furthermore, cytokines secreted
by Th2 cells are inhibitory of Th1 cells, and vice
versa82. This negative cross-regulation between the
cytokines produced by Th1 and Th2 cells suggests
that this anti-inflammatory profile could be long-
lasting, possibly conferring upon a GC-treated
patient sustained resistance to inflammatory
disorder19. Conversely, this change in T-cell profile
could also increase the risk of allergic (type 2)
morbidity, since hypersensitivity reactions can be
associated with a predominantly Th2 profile83.
However, limited in vivo data suggests only a short-
lived increase in type 2 cytokine secretion, and
the precise significance of an altered T-cell profile
discovery remains to be determined20-22.

Conclusion

Despite several advances in the understanding of
the mechanisms of GC immunosuppressive and
anti-inflammatory action, there remains the need
for a single comprehensive model in order to
significantly improve patient care. This paper has
detailed and classified the means by which
glucocorticoids are currently believed to exert
their powerful effects. Down-regulation of select
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pro-inflammatory cytokines, which is mediated
by the activated glucocorticoid receptor, is clearly
an action of particular importance. However, the
multiplicity of GC action also includes interference
with activation of cytokine-stimulated T-cells and
decreased activation of T-cells stimulated by
antigen-presenting cells. In vivo cellular activation
is also lessened by down-regulating cellular
adhesion molecules on APCs, a mechanism
particularly important to asthma treatment. 
The list of cellular processes and inflammatory
mediators down-modulated by GCs is substantial.
However, the activated glucocorticoid receptor 
is capable of excitatory activity as well.

GCs up-regulate anti-inflammatory mediators such
as TGF-β, lipocortin-1, and at least two known
antagonists of pro-inflammatory transcription
factors, glucocorticoid-induced leucine zipper and
IκB. Proteins that degrade cytokine mRNA are 
also up-regulated. Overall, any attempt at studying
GCs with the intention of improving drug activity
requires an in-depth analysis of the drug’s positive
and negative regulatory capabilities.

Other effects that follow from GC treatment are
apoptosis in T-cells, monocytes, and eosinophils,
and altered composition of Th lymphocytes by
means of the promotion of anti-inflammatory
cytokines. Three aspects of GC treatment may
prove important in future studies of long-term
effects of drug use; up-regulation of (pro-
inflammatory) cytokine receptors, interference
with negative T-cell selection, and a favoured Th2
(anti-inflammatory) profile. Results of in vivo
studies described above have not shown
conclusive evidence of permanent alterations to
a patient’s immune system, although research 
in this area should continue. Due to the
multifactorial nature of GC action, in vitro studies
are not sufficient to fully detail the complex
relationship between the effects of these drugs.
Despite the level of knowledge that we have now
reached in terms of individual effects of GCs, 
it is the combination of these effects that is 
of greatest importance. There are many negative
aspects of GC treatment, and a better
understanding of the mechanisms of GC action
may allow for the development of more effective
drugs that retain the potency of GCs but lack the
deleterious effects. However, our current
knowledge of GC mechanisms of action can be
used to make more educated decisions in assigning
treatment regiments to patients than was possible
even ten years ago.
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