Exact Sample Sizes for Groups in the Ratio 2:1

by Rod Bennett West Wales General Hospital Carmarthenshire NHS Trust SA31 2AF

 

Abstract: Exact Sample Size Tables are given for groups in the ratio 2:1 and 1:1 for alpha = 0.05 and beta = 0.20. The Tables were calculated from Excel Spreadsheets using Fisher's Exact Test and a modified version of Mainland's Method.

 

Keywords: Ratio of Treatment Groups Fisher’s Exact Test p-values Type I Type II Errors Power Approximations Mesh Size.

 

For prospective studies there can be difficulty in recruiting sufficient patients to take part within a given time span.

 

There are instances where randomly distributing the patients to the two treatment groups in the ratio 2:1 may be more time efficient and cost effective than the usual ratio 1:1.

 

The least conservative a priori values for alpha and beta1, the type I and type II errors, that are generally acceptable are a value of alpha = 0.05  ( the level set for statistical significance) and Power = 80% ( the value of 1- beta expressed as a percentage ).

 

One of the simplest arrangements for comparing data collected from two groups is the 2x2 Contingency Table but there is still no agreement amongst Statisticians as to the use of Conditional2 or Unconditional3 Tests.

 

Similarly tables of Samples Sizes may be determined by Exact4 or Approximate5 Methods and in one case a mixture of both6.

 

The simplicity of the Approximation Formulae of Lehr7 contrast with the large number of calculations required for Exact Sample Sizes which increases exponentially8.

 

As with the type of test and the method of calculation several methods have been suggested for the calculation of one-sided probability, amongst which are a Clopper-Pearson type value9 which maintains a value of at least alpha in the tail, the mid-p value10, and an approximation11 based on straddling the tail values.

 

The cells in the table were calculated as an Excel Spreadsheet and only those less than 150 are given here. The method being adapted from that of Mainland12.

 

The tables presented here are for Conditional Exact Sample Sizes using Fisher’s Exact Test to determine Statistical Significance and assuming the proportions in the Contingency Table to be Independent Binomial Proportions to calculate the corresponding Power.

 

The choice of mesh size 0.05 x 0.05 is simply one of convenience for publication. Both tables are extracts from larger unpublished tables of mesh size 0.01 x 0.01 and Sample Sizes to 1500. [No details have been given of the arc sin approximation13.]

 

To detect a difference of 0.3 between two proportions where p1 is 0.55 ( (and hence p2  is 0.85) for the groups in the ratio 2:1 72 patients in groups of 24 and 48 would be required as against two groups of 34.

 

The total number of patients required is always more for the 2:1 ratio.

 

Table 1 Treatment Groups in the Ratio 2:1

Difference in Proportions p2 – p1 where p1 is the smaller

p1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

p1

0

102

63

54

45

39

33

30

27

24

18

18

15

15

15

12

9

9

9

0

0.05

 

102

78

60

45

39

33

30

27

21

18

15

15

15

15

9

9

 

0.05

0.1

 

129

90

66

54

42

36

30

27

24

21

18

15

15

15

15

 

 

0.1

0.15

 

147

105

75

60

48

39

36

27

24

21

18

15

15

15

 

 

 

0.15

0.2

 

 

114

81

63

51

39

36

30

24

21

18

18

18

 

 

 

 

0.2

0.25

 

 

117

87

63

51

42

36

30

24

21

21

18

 

 

 

 

 

0.25

0.3

 

 

126

90

63

51

42

36

30

24

21

21

 

 

 

 

 

 

0.3

0.35

 

 

126

90

63

51

39

33

27

24

21

 

 

 

 

 

 

 

0.35

0.4

 

 

126

90

63

51

39

30

27

24

 

 

 

 

 

 

 

 

0.4

0.45

 

 

126

84

63

48

36

30

27

 

 

 

 

 

 

 

 

 

0.45

0.5

 

 

120

81

57

45

33

30

 

 

 

 

 

 

 

 

 

 

0.5

0.55

 

 

111

72

54

39

33

 

 

 

 

 

 

 

 

 

 

 

0.55

0.6

 

 

102

63

45

39

 

 

 

 

 

 

 

 

 

 

 

 

0.6

0.65

 

147

90

57

45

 

 

 

 

 

 

 

 

 

 

 

 

 

0.65

0.7

 

123

72

54

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.7

0.75

 

99

63

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.75

0.8

147

81

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.8

0.85

108

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.85

p1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

p1

 

Table 2 Treatment Groups in the Ratio 1:1

Difference in Proportions p2 – p1 where p1 is the smaller

p1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

p1

0

88

66

52

42

36

26

24

20

18

16

14

14

12

12

10

8

8

8

0

0.05

134

90

68

50

40

34

28

24

22

18

18

16

12

12

10

8

8

 

0.05

0.1

 

112

78

60

48

38

32

26

24

20

18

16

12

12

10

8

 

 

0.1

0.15

 

130

92

68

52

44

34

30

24

20

18

18

12

12

10

 

 

 

0.15

0.2

 

146

98

72

54

46

34

30

24

20

18

16

12

12

 

 

 

 

0.2

0.25

 

 

108

74

60

46

36

30

24

20

18

16

12

 

 

 

 

 

0.25

0.3

 

 

110

82

62

46

36

30

24

20

18

14

 

 

 

 

 

 

0.3

0.35

 

 

112

82

62

46

34

30

24

18

14

 

 

 

 

 

 

 

0.35

0.4

 

 

112

82

60

46

34

26

22

16

 

 

 

 

 

 

 

 

0.4

0.45

 

 

110

74

54

46

32

24

20

 

 

 

 

 

 

 

 

 

0.45

0.5

 

 

108

72

52

46

28

22

 

 

 

 

 

 

 

 

 

 

0.5

0.55

 

 

98

68

48

34

48

 

 

 

 

 

 

 

 

 

 

 

0.55

0.6

 

146

92

60

40

26

 

 

 

 

 

 

 

 

 

 

 

 

0.6

0.65

 

130

78

50

36

 

 

 

 

 

 

 

 

 

 

 

 

 

0.65

0.7

 

112

68

42

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.7

0.75

 

90

52

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.75

0.8

134

66

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.8

0.85

88

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.85

p1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

p1

 

 

1.      Hulley SB, Cummings SR, Browner WS, Grady D et al. Designing Clinical Research An Epidemiologic Approach. Lippincott Williams & Wilkins, PA. 2nd Edition 2001.

2.      Yates F. Contingency Tables involving small numbers and the chi square test. J Royal Statistical Society 1934;2(1) Suppl 1:217-235.

3.      Barnard GA. Significance tests for 2x2 tables. J Royal Statistical Society Series B. 1947;34:123-138.

4.      Haseman JK. Exact Sample Sizes for use with the Fisher-Irwin Test for 2x2 Tables. Biometrics 1978:34:106-109.

5.      Machin D, Campbell MJ, Fayers PM, Pinol APY. Sample Size Tables for Clinical Studies. Blackwell Science 2nd Edition 1997.

6.      Gail M, Gart JJ. The determination of Sample Sizes for use with the Exact Conditional Test in 2x2 Comparative Trials. Biometrics 1973;29:441-448.

7.      Lehr R. Sixteen s-squared over d-squared: a relation for crude sample size estimates. Statistics in Medicine 1992;11:1099-1102.

8.      Mehta CR. The Exact Analysis of Contingency Tables in Medical Research. Statistical Methods in Medical Research 1994;3:135-156.

9.      Clopper CJ, Pearson ES. The use of Confidence or Fiducial Limits illustrated in the case of the Binomial. Biometrika 1934;26(4):404-413.

10.  Berry G, Armitage P. Mid-p confidence intervals: a brief review. The Statistician 1995;44(4):417-423.

11.  Phipps MC. Liebermeister’s quasi-exact test for two binomials. Proceedings of the 2003 Hawii International Conference on Statistics and Related Fields. Editors: Gregson T, Yang D. University of Hawaii 2003.

12.  Mainland D, Sutcliffe MI. Statistical Methods in Medical Research. II. Sample sizes in Experiments involving All-or-None Responses. Canadian J of Medical Science. 1953;31:406-416.

13.  Cohen J. Statistical Power Analysis for the Behavioral Sciences. Academic Press N.Y. Revised Edition 1977